Volatile fractionation in the early solar system and chondrule/matrix complementarity.

نویسندگان

  • Philip A Bland
  • Olivier Alard
  • Gretchen K Benedix
  • Anton T Kearsley
  • Olwyn N Menzies
  • Lauren E Watt
  • Nick W Rogers
چکیده

Bulk chondritic meteorites and terrestrial planets show a monotonic depletion in moderately volatile and volatile elements relative to the Sun's photosphere and CI carbonaceous chondrites. Although volatile depletion was the most fundamental chemical process affecting the inner solar nebula, debate continues as to its cause. Carbonaceous chondrites are the most primitive rocks available to us, and fine-grained, volatile-rich matrix is the most primitive component in these rocks. Several volatile depletion models posit a pristine matrix, with uniform CI-like chemistry across the different chondrite groups. To understand the nature of volatile fractionation, we studied minor and trace element abundances in fine-grained matrices of a variety of carbonaceous chondrites. We find that matrix trace element abundances are characteristic for a given chondrite group; they are depleted relative to CI chondrites, but are enriched relative to bulk compositions of their parent meteorites, particularly in volatile siderophile and chalcophile elements. This enrichment produces a highly nonmonotonic trace element pattern that requires a complementary depletion in chondrule compositions to achieve a monotonic bulk. We infer that carbonaceous chondrite matrices are not pristine: they formed from a material reservoir that was already depleted in volatile and moderately volatile elements. Additional thermal processing occurred during chondrule formation, with exchange of volatile siderophile and chalcophile elements between chondrules and matrix. This chemical complementarity shows that these chondritic components formed in the same nebula region.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaporation of nebular fines during chondrule formation

Studies of matrix in primitive chondrites provide our only detailed information about the fine fraction (diameter <2 μm) of solids in the solar nebula. A minor fraction of the fines, the presolar grains, offers information about the kinds of materials present in the molecular cloud that spawned the Solar System. Although some researchers have argued that chondritic matrix is relatively unaltere...

متن کامل

Early Chemical History of the Solar System

The extreme antiquity and lack of evidence for significant chemical processing of the chondritic meteorites since they were formed suggest he possibility that their chemistry and mineralogy may have been established uring the condensation of the solar system. By using equilibrium thermodynamics, the sequence of condensation of mineral phases from a cooling nebula of solar composition has been c...

متن کامل

Size and Density of Chondrule Formation Regions from Missing Isotopic Fractionation

Introduction: Chondrules were probably formed as freely floating molten droplets by brief, very energetic, events in the protoplanetary nebula. Melting of such small objects in the near-vacuum of the nebula should evaporate their more volatile elements, preferentially removing the lighter isotopes of these elements. Chondrules are depleted in their more volatile elements, but unlike other molte...

متن کامل

An Experimental Investigation of the Planetary Embryo Bow Shock Model as a Chondrule Formation Mechanism

Introduction: Chondrules are sub-mm to mm-sized igneous inclusions that can comprise up to ~80% of the primitive meteorites called chondrites, and provide us with snapshots of the solar nebula. They are the key to understanding the early history of the Solar System and the formation of terrestrial planets. Chondrules formed in the first few million years (Myr) of the Solar System’s history [e.g...

متن کامل

Overcoming the Accretion Barrier in Protoplanetary Discs by Conditions Prevailing at Chondrule Formation

To form planets in protoplanetary discs, micrometer sized dust particles need to grow by hit-and-stick collisions to km sized planetesimals, followed by further proto-planetary growth by gravitational forces. A serious obstacle of coagulation of large bodies is their increasing collision velocity: while larger bodies orbit with Keplerian velocity, small dust couples to the gas that rotates with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 39  شماره 

صفحات  -

تاریخ انتشار 2005